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Device design in nano-electronics generally yields strongly coupled problems in time-domain. The solution of such problems formally
entails a monolithic approach that is characterised by a large system matrix. In this paper, a error correction scheme is proposed
within the context of electro-thermal coupling in device structures. The scheme avoids the computational burden of a monolithic
implementation and retains the convergence order in time by conveniently solving an error equation in a recursive fashion. The
method can also be integrated with sub-problem-wise order reduction technique.
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I. INTRODUCTION

IN this paper an approach for solving electro-thermal prob-

lems encountered in device structure is described. The

approach is built upon the finite integration technique (FIT)

[1], [2] and aims at avoiding the computational burden of

a monolithic solution. This paper is organised as follows:

In Section 2, the electro-thermal problem is formulated, and

numerically solved. In Section 3 a simple numerical example

is provided.

II. DYNAMICAL ELECTRO-THERMAL MODELLING OF

DEVICES STRUCTURES

A. Problem Statement

We depict a structure of interest in Fig. 1. Typically, these

structures comprise dielectric materials, vias, contacts, and

metal interconnects. We want to compute the temperature in

such configurations resulting from an applied voltage. The

governing equations are

∇ · J = −
∂̺e

∂t
; ̺e = −∇ · (εE) ; J = σE; E = −∇φ−

∂A

∂t
;

(1)

ρce

∂T

∂t
= ∇ · (κ∇T ) + q̇i, (2)

where J is the current density, A the magnetic potential, E the

electric field, φ the electric potential, ε and σ the permittivity

and conductivity of the medium, ̺e the electric charge density,

ρce the thermal capacitance, κ the thermal conductivity, T
the temperature, and q̇i an impressed heat source. The system

(1)–(2) is coupled through q̇i = E · J and the temperature

dependence of σ, ρce, and κ.

B. Numerical Solution

We attain the numerical solution of (1)–(2) by means of FIT

[1], [2]. The grid counterpart of (1)–(2) reads

S̃MσS̃
⊤Φ = 0, Mc

∂

∂t
T = −S̃MκS̃

⊤T+Qi, (3)

Fig. 1. Typical layout (stretched along the vertical direction) of a power
transistor. Image from [3].

where Φ and T are the potential and temperature vectors,

Mσ, Mc, and Mκ are diagonal material matrices representing

conductivity, thermal capacitance, and thermal conductivity,

respectively; the grid heat source Qi is given by

Qi ≡
∑

i

P
(

1⊤
i
M

1

2

σ S̃
⊤ΦΦ⊤S̃M

1

2

σ1i

)

1i, (4)

with P a projection matrix that enables to compute the heat

source at the grid nodes [4], [5], 1i the i-th basis column vector,

and the sum carried out over all grid primary edges [1], [2], [6].

We partition Φ and T into {Φd,Td} and {Φb,Tb}, that is the

degrees of freedom and boundary potentials and temperatures.

After some mathematical manipulations, we arrive at

S̃dMσS̃
⊤

d Φd =− S̃dMσS̃
⊤

b Φb, (5)

Mc;d
∂

∂t
Td =− S̃dMκS̃

⊤

d Td − S̃dMκS̃
⊤

b Tb

+Φ⊤

d HddΦd +Φ⊤

d HdbΦb,
(6)

where Hdd and Hdb are heat tensors1. The system (5)–(6) is

an index-1 DAE that can be readily solved by the implicit

Euler method [6]. However, we obtain the solution by means

of a decoupling fractional step approach endowed with an error

correction scheme. The later permits to retain the temporal

1Three-dimensional arrays of depth equal to the length of Td, and where
the subscripts dd and db denote the number of rows and columns, respectively.
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Fig. 2. Correction error ‖eT‖ versus the time step h.

convergence order while avoiding the burden of the monolithic

solution.

C. Error Correction Scheme

We introduce a staggered grid pair in time, i.e., t =
[t1, t2, . . . , tn] with time step hi. The dual grid is shifted by

half of a time step. Then, we proceed to decouple Φd and Td

over a time step hi, viz.

∂

∂t
Φd ≡ 0 ⇒ Φ̃

(n+ 1

2
)

d = Φ̃
(n)
d , tn ≤ t < tn +

hi

2
,

(7)

∂

∂t
Td ≡ 0 ⇒ T̃

(n+1)
d = T̃

(n+ 1

2
)

d , tn +
hi

2
≤ t < tn + hi,

(8)

where˜denotes approximations. The resulting system is solved

by means of the implicit Euler method thus generating a first

estimation of {Φd,Td}, viz.

Mc;d
T̃

(n+ 1

2
)

d − T̃
(n)
d

hi/2
=− S̃dM̃κS̃

⊤

d T̃
(n+ 1

2
)

d − S̃dM̃κS̃
⊤

b Tb

+ Φ̃
⊤(n)
d H̃ddΦ̃

(n)
d + Φ̃

⊤(n)
d H̃dbΦb,

(9)

S̃dM̃
(n+ 1

2
)

σ S̃⊤d Φ̃d =− S̃dM̃
(n+ 1

2
)

σ S̃⊤b Φb. (10)

Subsequently, we define the errors eΦ = Φ − Φ̃ and eT =
T− T̃. These errors consist of two contributions; one coming

from the time discretisation and the other coming from the

decoupling. Both error contributions are O(hi). We reduce

these errors by solving the associated error equation in a

recursive fashion, viz.

− rT ∼= Mc;deT +

t
∫

0

S̃dM̃κS̃
⊤

d eT + S̃dEκS̃
⊤

d T̃d dt

+

t
∫

0

S̃dEκS̃
⊤

b Tb dt−

t
∫

0

Φ̃⊤

d EddΦ̃d dt+ e⊤ΦH̃ddΦ̃d dt

−

t
∫

0

Φ̃⊤

d H̃ddeΦ dt+ e⊤ΦH̃ddeΦ + Φ̃⊤

d EdbΦb + e⊤ΦH̃dbΦb dt,

(11)

and

−rΦ ∼= −S̃dM̃σS̃
⊤

d eΦ − S̃dEσS̃
⊤

d Φ̃d − S̃dEσS̃
⊤

b Φb, (12)

where rT and rΦ are residual functions, Eκ ≡ Mκ − M̃κ,

Eσ ≡ Mσ − M̃σ, Edd ≡ Hdd − H̃dd, and Edb ≡ Hdb − H̃db

are function of eT.

III. NUMERICAL EXAMPLE

The afore-described method has been applied to a electro-

thermal problem from MAGWEL, modelled in their PTM-ET

software, in which the temperature dependence of the material

matrices Mκ and Mσ, and heat tensors Hdd and Hdb, is given

by polynomials Πκ;σ (T,To) with reference temperature To.

We have solved for Φ̃d and T̃d using the implicit Euler method

with iterative refinement. Figure 2 shows the correction error

‖eT‖ after two recursions.

IV. CONCLUSION

We have described an approach for the error correction of

index-1 DAE describing electro-thermal systems. The method

avoids the monolithic solution while retaining the time conver-

gence order. Future research will investigate the combination

of the iterative with a sub-problem-wise model order reduction

technique.
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